Class | Description |
---|---|
BatchReader |
Base strategy for reading a batch of Parquet records.
|
BatchReader.FixedWidthReader |
Strategy for reading a record batch when all columns are
fixed-width.
|
BatchReader.MockBatchReader |
Strategy for reading mock records.
|
BatchReader.VariableWidthReader |
Strategy for reading a record batch when at last one column is
variable width.
|
ColumnReader<V extends ValueVector> | |
ColumnReaderFactory | |
FixedWidthRepeatedReader | |
NullableFixedByteAlignedReaders | |
NullableFixedByteAlignedReaders.CorruptionDetectingNullableDateReader |
Old versions of Drill were writing a non-standard format for date.
|
NullableFixedByteAlignedReaders.NullableCorruptDateReader |
Old versions of Drill were writing a non-standard format for date.
|
NullableFixedByteAlignedReaders.NullableDateReader | |
NullableFixedByteAlignedReaders.NullableIntervalReader | |
NullableVarLengthValuesColumn<V extends ValueVector> | |
ParquetColumnMetadata |
Represents a single column read from the Parquet file by the record reader.
|
ParquetFixedWidthDictionaryReaders | |
ParquetRecordReader | |
ParquetSchema |
Mapping from the schema of the Parquet file to that of the record reader
to the schema that Drill and the Parquet reader uses.
|
ParquetToDrillTypeConverter | |
ReadState |
Internal state for reading from a Parquet file.
|
VarLenBinaryReader |
Class which handles reading a batch of rows from a set of variable columns
|
VarLenColumnBulkInput<V extends ValueVector> |
Implements the
VarLenBulkInput interface to optimize data copy |
VarLengthColumn<V extends ValueVector> | |
VarLengthColumnReaders | |
VarLengthColumnReaders.NullableVarBinaryColumn | |
VarLengthColumnReaders.NullableVarCharColumn | |
VarLengthColumnReaders.NullableVarDecimalColumn | |
VarLengthColumnReaders.VarBinaryColumn | |
VarLengthColumnReaders.VarCharColumn | |
VarLengthColumnReaders.VarDecimalColumn | |
VarLengthValuesColumn<V extends ValueVector> | |
VarLenOverflowReader |
This class is responsible for processing serialized overflow data (generated in a previous batch); this way
overflow data becomes an input source and is thus a) efficiently re-loaded into the current
batch ValueVector and b) subjected to the same batching constraints rules.
|
Copyright © 1970 The Apache Software Foundation. All rights reserved.